Гидравлический, пневматический и электропривод постоянно и остро конкурируют между собой в современной робототехнике. Но, как выяснилось, возможности электропривода могут быть шире, чем казалось: достаточно от химических накопителей энергии перейти к электрическим конденсаторам.
Наши читатели, несомненно, помнят о DARPA-конкурсе, посвящённом созданию книверсальных роботов-спасателей (DARPA Robotics Challenge). Юничи Урата и его коллеги из Токийского университета (Япония), руководимые профессором Масаяки Инабой, трудятся над механизмом, который вполне может победить в Robotics Challenge.
Обычная проблема роботов с манипуляторами на базе электроприводов — ограниченное напряжение и мощность, которую в единицу времени можно снять с аккумуляторов дрона. Гидропривод, например, как у прототипа компании Boston Dynamics, тоже имеет свои ограничения. Насосы громоздки, управлять гидроприводом непросто: он обеспечивает хороший момент, но его не назовёшь быстрым. Напомним: танковая башня «Тигра» (гидропривод) поворачивалась «кругом» от 60 секунд до 60 минут в зависимости от давления в системе. Увы, за последние десятилетия особенности гидропривода фундаментально не изменились. Конечно, можно поддерживать давление в системе постоянно высоким, но это вызовет большие потери мощности и повысит риск утечек.
Японские разработчики, занятые созданием платформы робота-гуманоида, как и В. И. Ульянов, пошли другим путём. Они заменили литиевые аккумуляторы, столь популярные в робототехнике, на суперконденсаторы. Их «робоноги» — основа платформы робоспасателя — оснащены 13,5-фарадным ионистором, способным молниеносно отдать запасённую электрическую энергию, вместо того чтобы плавно получать её от химического источника. Платформа, уходящая корнями в серийный HRP3L (Kawada Industries), называется HRP3L-JSK. Преимущества суперконденсаторов в смысле мгновенной мощности очевидны. Всего 200-ваттные бесщёточные электромоторы (по мощности это кофемолка) обеспечивают крутящий момент (в коленном суставе) в 350 Н•м — на уровне Land Cruiser! Электромоторы, через которые столь быстро пропускается плотный поток энергии, модифицированы под жидкостное охлаждение. Как отмечают авторы, робот-спасатель может действовать в условиях, где воздушное охлаждение бесполезно, — к примеру, при пожаре в замкнутом помещении. Конечно, ионисторы имеют не такую высокую общую ёмкость, но умеренная масса и габариты электропривода в сравнении гидравликой ещё и снижают затраты энергии на перемещение робота в пространстве, поэтому в целом баланс энергопотребления и времени автономной работы практически не изменился.
Напомним, что по условиям DARPA-конкурса роботам предстоят жестокие испытания: борьба с бетонными препятствиями (с долотом в руках), разбор завалов, откручивание/закручивание аварийных промышленных вентилей и пр. Очень важна и возможность противостояния машин факторам, способным «вывести» из равновесия (землетрясения, падения крупных предметов и т. п.). С этим HRP3L-JSK как раз неплохо справляется:
Кстати, этот 53-килограммовый робоспасатель может прыгать в высоту до 44 см (для 200-ваттных моторов это очень хороший результат: у человека при куда большей мощности он не лучше). У него есть и неплохое ПО, следящее за поддержанием равновесия. Сейчас разработчики заняты проектированием «верхней» части гуманоида, ведь ему, как просит DARPA, предстоит также водить грузовики и пробивать стены.
Но уже сейчас можно предположить, что как минимум для ряда робототехнических приложений суперконденсаторы окажутся эффективнее литиевых аккумуляторов, и мы наблюдаем начало нового значимого тренда в роботостроении.
Кстати, DARPA на нынешнем этапе рассматривает как официальную (предварительно, до подведения итогов конкурса) платформу робогуманоида Boston Dynamics, на гидравлике. Что ж, будет интересно сравнить их функциональность, ведь пока трудно себе представить, как «любимчик» DARPA сможет прилагать такое же усилие при столь же малой массе...
Подготовлено по материалам IEEE Spectrum.
Please enable JavaScript to view the comments powered by Disqus.
blog comments powered by
Наши читатели, несомненно, помнят о DARPA-конкурсе, посвящённом созданию книверсальных роботов-спасателей (DARPA Robotics Challenge). Юничи Урата и его коллеги из Токийского университета (Япония), руководимые профессором Масаяки Инабой, трудятся над механизмом, который вполне может победить в Robotics Challenge.
Обычная проблема роботов с манипуляторами на базе электроприводов — ограниченное напряжение и мощность, которую в единицу времени можно снять с аккумуляторов дрона. Гидропривод, например, как у прототипа компании Boston Dynamics, тоже имеет свои ограничения. Насосы громоздки, управлять гидроприводом непросто: он обеспечивает хороший момент, но его не назовёшь быстрым. Напомним: танковая башня «Тигра» (гидропривод) поворачивалась «кругом» от 60 секунд до 60 минут в зависимости от давления в системе. Увы, за последние десятилетия особенности гидропривода фундаментально не изменились. Конечно, можно поддерживать давление в системе постоянно высоким, но это вызовет большие потери мощности и повысит риск утечек.
Японские разработчики, занятые созданием платформы робота-гуманоида, как и В. И. Ульянов, пошли другим путём. Они заменили литиевые аккумуляторы, столь популярные в робототехнике, на суперконденсаторы. Их «робоноги» — основа платформы робоспасателя — оснащены 13,5-фарадным ионистором, способным молниеносно отдать запасённую электрическую энергию, вместо того чтобы плавно получать её от химического источника. Платформа, уходящая корнями в серийный HRP3L (Kawada Industries), называется HRP3L-JSK. Преимущества суперконденсаторов в смысле мгновенной мощности очевидны. Всего 200-ваттные бесщёточные электромоторы (по мощности это кофемолка) обеспечивают крутящий момент (в коленном суставе) в 350 Н•м — на уровне Land Cruiser! Электромоторы, через которые столь быстро пропускается плотный поток энергии, модифицированы под жидкостное охлаждение. Как отмечают авторы, робот-спасатель может действовать в условиях, где воздушное охлаждение бесполезно, — к примеру, при пожаре в замкнутом помещении. Конечно, ионисторы имеют не такую высокую общую ёмкость, но умеренная масса и габариты электропривода в сравнении гидравликой ещё и снижают затраты энергии на перемещение робота в пространстве, поэтому в целом баланс энергопотребления и времени автономной работы практически не изменился.
Устойчивость к потрясениям у нового робота оказалась чрезвычайно высокой (для такой малой массы). При ударе он молниеносно отходит, компенсируя полученный импульс. (Здесь и ниже иллюстрации Univ. of Tokyo's JSK Lab.) |
Кстати, этот 53-килограммовый робоспасатель может прыгать в высоту до 44 см (для 200-ваттных моторов это очень хороший результат: у человека при куда большей мощности он не лучше). У него есть и неплохое ПО, следящее за поддержанием равновесия. Сейчас разработчики заняты проектированием «верхней» части гуманоида, ведь ему, как просит DARPA, предстоит также водить грузовики и пробивать стены.
Светлый ящик на платформе — суперконденсаторы. Справа, для сравнения, прототип ходовой части робота компании Boston Dynamics. При сходном моменте весит он 150 кг. |
Кстати, DARPA на нынешнем этапе рассматривает как официальную (предварительно, до подведения итогов конкурса) платформу робогуманоида Boston Dynamics, на гидравлике. Что ж, будет интересно сравнить их функциональность, ведь пока трудно себе представить, как «любимчик» DARPA сможет прилагать такое же усилие при столь же малой массе...
Подготовлено по материалам IEEE Spectrum.
Please enable JavaScript to view the comments powered by Disqus.
blog comments powered by
Комментариев нет:
Отправить комментарий